
Simulations, and probability and statistics review

Mauricio Romero

1



Simulations, and probability and statistics review

Introduction and simulations

Review of probability and statistics

Statistical inference

Application: is a coin fair?

2



Simulations, and probability and statistics review

Introduction and simulations

Review of probability and statistics

Statistical inference

Application: is a coin fair?

3



Simulation (i.e., creating fake data)

� Why do this? Why not just use real data?

� Because with real data, we don’t know what the right answer is

� So if we do some method, and it gives us an answer, how do we know if the

answer is right?

� Simulation lets us know the right answer

� And if the method works (at least in our fake scenario), we can apply it to some

real data
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Goal: Uncovering the truth

� When it comes down to it, what is the purpose of data analysis?

� When we work with data, we have this idea that there exists a true model

� The true model is the way the world actually works!

� But we don’t know what that true model is
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The purpose of data analysis

� So that’s where the data comes in

� The true model generated the data (the ’data generating process’ or DGP)

� By looking at the data we’re trying to work backwards to figure out what is the

’data generating process’

� With simulation, we know what generated the data and what the true model is.

Thus we can check how close we get with our data analysis
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Example

� Let’s generate 500 coin flips

� True model: generate heads with probability 1/2 and tails with probability 1/2

coins <- sample(c("Heads","Tails"),500,replace=T)
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Example

� Now let’s take that data as given and analyze it in our standard way!

� The proportion of heads is ‘mean(coins==’Heads’)‘ (≈0.496)

� And we can look at the distribution, as we would:

mean(coins ==’Heads ’)

barplot(prop.table(table(coins )))

#THE GGPLOT2 WAY

#ggplot(as.data.frame(coins),aes(x=coins ))+ geom_bar()
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Example

� So what’s our conclusion?

� We would “estimate” that the true model generates heads ≈0.496 of the time

�
1
2 is correct, so pretty close! But not exact.

� What if it always errs on the same side? Then it’s not a good method at all!
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Simulation in a loop

� We can go a step further by doing this simulation over and over again in a loop!

� This will let us tell whether our method gets it right on average

� And, when it’s wrong, how wrong it is!
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Simulation in a loop

#A blank vector to hold our results

propHeads <- c()

#Let ’s run this simulation 2000 times

for (i in 1:2000) {

#Re -create data using the true model

coinsdraw <- sample(c("Heads","Tails"),500,replace=T)

#Re -perform our analysis

result <- mean(coinsdraw =="Heads")

#And store the result

propHeads[i] <- result

}

#Let ’s see what we get on average

stargazer(as.data.frame(propHeads),type=’text’)

#And let ’s look at the distribution of our findings

plot(density(propHeads),xlab=’Proportion Heads ’,

main=’Mean of 501 Coin Flips over 2000 Samples ’)

abline(v=mean(propHeads),col=’red’) 12
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Simulation in a loop

� Now that’s pretty exact!

� What are we learning here?

� The method that we used (taking the proportion of heads) will, on average, give

us the right answer (12)

� Good! We can apply this method to the the real world

� Caveat: in any given sample that we actually observe, it might be a little off
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Real world

� Imagine we didn’t know the answer was 1
2

� We wan to know what proportion of the time will a coin land heads

� Collect data on coin flips

� Perform our analysis method - take proportion of heads, and get ≈0.496

� Conclude that the true model produces heads ≈0.496 of the time

� We wouldn’t be dead on, but on average we’d be right!

� Statistical inference is all about formalizing this process
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Warning... this is hard

� Randomness is all around us

� Our brain is NOT hardwired to think about randomness
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Random variables

� Probability/statistics allows us to analyze chance events in a logically way

� The probability of an event is a number indicating how likely that event will occur

� Probability is always between 0 (never happens) and 1 (always happens)

� Random variable assigns numbers to different outcomes (each with a probability)

� Coin toss. It’s random. Each face has 1
2 probability

� By assigning 1 to tail and 0 to head we created a random variable
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Before we go any further, some clarifications

� Goal: Estimate unknown parameters

� To approximate parameters, we use an estimator, which is a function of the data

21



Important notation

Based on this tweet: https://twitter.com/nickchk/status/1272993322395557888

� Greek letters (e.g., µ) are the truth (i.e., parameters of the true DGP)

� Greek letters with hats (e.g., µ̂) are estimates (i.e., what we think the truth is)

� Non-Greek letters (e.g., X ) denote sample/data

� Non-Greek letters with lines on top (e.g., X ) denote calculations from the data

(e.g., X = 1
N

∑
i Xi ).

� We want to estimate the truth, with some calculation from the data (µ̂ = X )

� Data −→ Calculations −→ Estimate −→︸︷︷︸
Hopefully

Truth

� Example: X −→ X −→ µ̂ −→︸︷︷︸
Hopefully

µ
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Notation example with a coin toss

� µ denotes the true probability a coin lands head (12 if the coin is fair)

� µ̂ is our estimator of the probability a coin lands head

� X is the data we gather from tossing a coin 500 times

� X is the proportion of times the coin lands head

� Data from coin tosses −→ Calculate proportion of heads −→ Estimator for the

probability of heads −→︸︷︷︸
Hopefully

True probability

� X −→ X −→ µ̂ −→︸︷︷︸
Hopefully

µ
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Discreet random variables

� Takes only a discreet set of values

� Probability distribution (P(X = x) = f (x)): probability event x happens

� f (x) ∈ [0, 1]

� Cumulative probability distribution (P(X ≤ x) = F (x): probability random

variable is less than or equal to x
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Continuous random variables

� Takes a continuum of values

� Probability density function (f (x)): not the probability x happens

� zero since there are infinity many possible values

� P(a < x < b) =
∫ b

a
f (x)dx

� f (x) helps us recover the probability that a random variable is in an interval

� f (x) ∈ [0, 1]

� Cumulative probability distribution (P(X ≤ x) = F (x) =
∫ x
−∞ f (x)dx : probability

random variable is less than or equal to x
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Summarizing a distribution

� What are we actually doing when we do something like take a mean or a median?

� We’re trying to say something about the distribution of that variable

� Distribution: how often values occur when you randomly sample over and over

� Distribution of a coin toss: half the times you get “head” (other half get “tail”)

� Distribution of the minutes in the day: it’s equally likely to be any minute

� Distribution of height looks like a bell-curve shape

� Distribution of income/wealth: Most people near the bottom; very few at the top

� https://wid.world/simulator/

� https://mkorostoff.github.io/1-pixel-wealth/
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Summarizing a distribution: Expectations and variances

� Expectation attempts to capture the “mean” of the random variable

� Variance quantifies the spread of the random variable

� For a discreet random variable

� E[X ] :=
∑

x f (x)x

� V (X ) := E[(X − E[X ])2] =
∑

x f (x) (x − E[X ])2

� For a continuous random variable

� E[X ] :=
∫∞
−∞ f (x)xdx

� V (X ) := E[(X − E[X ])2] =
∫∞
−∞ f (x) (x − E[X ])2 dx
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Expectations and variances

For any constants a and b and random variables X and Y:

� E[aX + b] = aE[X ] + b

� E[X + Y ] = E[X ] + E[Y ]

� V (aX + b) = a2V (X )

� Cov(X ,Y ) := E[(X − E[X ])(Y − E[Y ])] = E[XY ]− E[X ]E[Y ]

� Cor(X ,Y ) := Cov(X ,Y )
V (x)V (y) ∈ [−1, 1]

� V (X + Y ) = V (X ) + V (Y ) + 2Cov(X ,Y )
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Independence

� X and Y are independent if P(X < x ,Y < y) = P(X < x)P(Y < y)

� If X and Y are independent then:

� E (XY ) = E (X )E (Y )

� Cov(X ,Y ) = 0 (if Cov(X ,Y ) = 0 this does not imply independence)

� V (X + Y ) = V (X ) + V (Y )
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No correlation does not mean no causality/dependence: Mathematical fact

� Let X be a random variable such that P(X = x) = 1
3 if x ∈ {−1, 0, 1}

� Let Y = X 2

� X and Y are not independent (in fact Y is a function of X )

� EX = 0

� EY = 2
3

� EX 3 = 0

Cov(X ,Y ) = E(X − E(X ))(Y − E(Y ))

= E(X )(X 2 − 2

3
)

= E(X 3 − X
2

3
)

= E(X 3)− 2

3
E(X )

= 0
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Normal distribution

Let X ∼ N(µ, σ2)

� The probability density function (PDF) of X is given as:

fX (x) =
1√
2πσ2

e−
(x−µ)2

2σ2

� The cumulative distribution function (CDF) of X is given as:

P(X < x) = FX (x) =

∫ x

−∞
fX (x)

� E[X ] = µ

� V (X ) = σ2

� A standard normal has mean zero (µ = 0) and variance one (σ = 1)

� Φ (·): CDF of the standard normal
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Normal distribution

� For a, b ∈ R and independent random variables X ∼ N(µX , σ
2
X );Y ∼ N(µY , σ

2
Y )

� aX + b ∼ N(aµX + b, a2σ2
X )

� X + Y ∼ N(µX + µY , σ
2
X + σ2

Y )

� Therefore
X − µX

σX
∼ N(0, 1)

� The cumulative distribution function (CDF) of X is given as:

P(X ≤ x) = P

 X − µX

σX︸ ︷︷ ︸
Standard normal

<
x − µX

σX

 = Φ

(
x − µX

σX

)
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Generating Normal data

� Good for many ’real-world’ variable: height, intellect, log income, education level

� Especially when those distributions tend to be tightly packed around the mean!

� Less good for variables with huge huge outliers, like stock market returns

� ‘rnorm(thismanyobs,mean,sd)‘ will draw ‘thismanyobs‘ observations from a normal

distribution with mean ‘mean‘ and standard deviation ‘sd‘

� ‘rnorm(thismanyobs)‘ will assume ‘mean=0‘ and ‘sd=1‘

norma ldata <= rnorm ( 5 )

norma ldata

norma ldata <= rnorm ( 2000 )

h i s t ( normaldata ,

x l a b=”Random Value ” ,

main=”Random Data from Normal D i s t r i b u t i o n ” ,

p r o b a b i l i t y=TRUE)
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Distribution of Random Data from Normal Distribution
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No correlation does not mean no causality/dependence: Mathematical fact II

� Let X ∼ N(0, 1)

� Let Y = X 2

� X and Y are not independent (in fact Y is a function of X )

� EX = 0

� EY = σ2

� EX 3 = 0

Cov(X ,Y ) = E(X − E(X ))(Y − E(Y ))

= E(X )(X 2 − σ2)

= E(X 3 − Xσ2)

= E(X 3)− σ2E(X )

= 0
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Uniform distribution

Let X ∼ U(a, b)

� fX (x) =

 1
b−a if a ≤ x ≤ b

0 otherwise

� E[X ] = b+a
2

� V (X ) = (b−a)2

12

� cX ∼ U(ca, cb)

� X + d ∼ U(a+ d , b + d)
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Generating uniform data

� Good for variables that should be bounded: e.g., “percent male” can only be 0-1

� Gives even probability of getting each value

� ‘runif(thismanyobs,min,max)‘ will draw ‘thismanyobs‘ observations from the range

of ‘min‘ to ‘max‘.

� ‘runif(thismanyobs)‘ will assume ‘min=0‘ and ‘max=1‘

uniformdata <- runif(5)

uniformdata

uniformdata <- runif(2000)

hist(uniformdata ,xlab="Random Value",

main="Random Data from Uniform Distribution",

probability=TRUE)
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Distribution of Random Data from Uniform Distribution
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Generating Other Kinds of Data

� ‘sample()‘ picks randomly from categories (e.g., Heads/Tails) or integers (e.g.,

‘1:10‘)

� R can generate random data from other distributions. See ‘help(Distributions)‘

� We have looked quickly at two:

� The uniform distribution

� The normal distribution

� But don’t forget there are more

� When generating “random” data: set a seed so you can reproduce the results

(‘set.seed(XXX)’)
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Law of large numbers

� Let X1, ...,XN be independent and identically distributed (iid) with mean µ and
variance σ2

� E
[∑N

i=1 Xi

]
= Nµ

� V
(∑N

i=1 Xi

)
= Nσ2

� V
(

1
N

∑N
i=1 Xi

)
= 1

N σ
2

� E
[
1
N

∑N
i=1 Xi

]
= µ

� As n grows, the variance goes to zero, but the mean is always µ

� That is, the mean of the random variables (X ) converges (in probability) to µ
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Example: Coin flips

� Throw a coin 1,000 times

� Let’s create a random variable X =

1 if coin = Heads

0 if coin = tails

� E(X ) = 11
2 + 01

2 = 1
2

� V (X ) = (1− 0.5)2 12 + (0− 0.5)2 12 = 1
4

� X proportion of times coin lands on heads

� EX = 1
2

� VX = 1
4N
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Example: Coin flips

A little simulation:

## Generate data with 1000 coin flips

## Pprob of head and tail is the same

data <- sample(c("Heads","Tails"),1000,replace=TRUE)

## Create random variable (one if heads , zero if tails)

X<-as.numeric(data=="Heads")

# Calculate the proportion of heads of the first n observations

X_n<-cumsum(X)/(1:1000)

#Plot the results

plot(1:1000,X_n,bty="L",ylim=c(0,1),

ylab="Average",xlab="Tosses",type="l",lwd=2,

cex.lab=1.5,cex.axis=1.5,cex.main=1.5)

abline(h=0.5,lty=2,col=2,lwd=2)
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Law of large numbers in action
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Central limit theorem

� Let X1, ...,XN be iid with mean µ and variance σ2

�

1
N

∑N
i=1 Xi−µ
σ√
n

= X n−µ
σ√
n

is distributed approximately (converges in law) ∼ N(0, 1)

� The larger N is, the closer the distribution of X n−µ
σ√
n

is to N(0, 1)

� X ∼ N
(
µ, σ

N

)
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Example: Coin flips CLT

# We will do this process 10,000 times!

Repetitions=10000

# Each time , we will throw the coin 1,000 times

CoinFlips=1000

# This is a vector we will save the proportion of heads in each repetition

Vector_Means=rep(NA,Repetitions)

# Loop over the repetitions

for(rep in 1:Repetitions ){

#Create the coinflip data

data <- sample(c("Heads","Tails"),CoinFlips ,replace=TRUE)

#generate random variable

X=as.numeric(data=="Heads")

#save the proportion of times it lands head

Vector_Means[rep]=mean(X)

}
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Example: Coin flips CLT

#Should converge to a N(0.5,0.25/CoinFlips) by CLT

pdf("CLT.pdf")

#Plot the distribution of the means

hist(Vector_Means , col="red", xlab="Proportion of heads",breaks=50,

main="CLT",probability =T,

cex.lab=1.5,cex.axis=1.5,cex.main=1.5)

#Plot N(0.5,0.25/CoinFlips)

xfit <-seq(min(Vector_Means),max(Vector_Means),length=40)

yfit <-dnorm(xfit ,mean=0.5,sd=sqrt(0.25/CoinFlips ))

lines(xfit , yfit , col="blue", lwd=2)

dev.off()
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Inference

� Goal: Estimate unknown parameters

� To approximate parameters, we use an estimator, which is a function of the data

� Thus, estimator is a random variable (it is a function of a random variable)

� Use relationship between estimator (its distribution usually) and parameters to

infer something about the parameters
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Important notation

Based on this tweet: https://twitter.com/nickchk/status/1272993322395557888

� Greek letters (e.g., µ) are the truth (i.e., parameters of the true DGP)

� Greek letters with hats (e.g., µ̂) are estimates (i.e., what we think the truth is)

� Non-Greek letters (e.g., X ) denote sample/data

� Non-Greek letters with lines on top (e.g., X ) denote calculations from the data

(e.g., X = 1
N

∑
i Xi ).

� We want to estimate the truth, with some calculation from the data (µ̂ = X )

� Data −→ Calculations −→ Estimate −→︸︷︷︸
Hopefully

Truth

� Example: X −→ X −→ µ̂ −→︸︷︷︸
Hopefully

µ
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Properties of a good estimator

� Unbiased: E(µ̂) = µ

� Consistent: µ̂ →P µ

� Think of this as: unbiased + variance goes to zero when N grows
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Example: is a coin is fair?

� Toss a coin

� Assign head=1, tail=0

� µ is the probability it lands heads (if coin is fair µ = 1
2)

� What is a good estimator of µ?

� Let’s try: average of the observations: µ̂ = X
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Example: is a coin is fair?

� Is it unbiased? Yes: EX = 1
N

∑
i EX = 1

N

∑
i µ = µ

� Is it Consistent? Yes by the law of large numbers

� Assume in the actual data we observe X = 0.6

� Is the coin fair?
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Example: is a coin is fair?

� Our certainty is going to depend on how many times we tossed the coin

� By the CLT
√
N
σ (X − µ) ∼ N(0, 1)

� σ2 = µ(1− µ)

� Then X ∼ N
(
µ, µ(1− µ) 1

N

)
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If µ = 0.5 the CLT says the distribution is the following
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To assess fairness we need to know where µ lies (Confidence interval)

� We are going to play around to see if we can find an “interval” for µ

� We want to find some values a and b such that P(a < µ < b) = 1− α

� P(−a > −µ > −b) = 1− α

� P(X − a > X − µ > X − b) = 1− α

� P

 X−a√
σ2 1

N

>
X − µ√
σ2 1

N︸ ︷︷ ︸
standard normal

> X−b√
σ2 1

N

 = 1− α

� Assuming we want symmetry (so α
2 on each side), then:

� Φ

(
X−b√
σ2 1

N

)
= α

2

� Φ

(
X−a√
σ2 1

N

)
= 1− α

2
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Confidence interval

� Thus:

� Φ−1
(
α
2

)
= X−b√

σ2 1
N

� Φ−1
(
1− α

2

)
= X−a√

σ2 1
N

� b = X − Φ−1
(
α
2

)√
σ 1

N

� a = X − Φ−1
(
1− α

2

)√
σ 1

N

� µ is between X − Φ−1
(
1− α

2

)√
σ 1
N and X − Φ−1

(
α
2

)√
σ 1
N with probability

1− α
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To assess fairness we need to know where µ lies

� Say α = 5%, then Φ−1
(
α
2

)
= −1.96 and Φ−1

(
1− α

2

)
= 1.96

� X = 0.6, then σ2 = (0.6)0.4

� Then we know µ is between:

� 0.6− 1.96 1
N

√
0.24

� 0.6 + 1.96 1
N

√
0.24
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To assess fairness we need to know where µ lies

� We know µ is between:
� 0.6− 1.96 1

N

√
0.24

� 0.6 + 1.96 1
N

√
0.24

� If N = 10 then
� ≈ 0.903

� ≈ 0.2906

� Coin could be fair

� If N = 100 then
� ≈ 0.50398

� ≈ 0.69602

� ‘Data we observe is unlikely (less than 5% chance) to come from a fair coin

� If N = 1, 000 then
� ≈ 0.5696358

� ≈ 0.6303642

� Data we observe is unlikely (less than 5% chance) to come from a fair coin
62



p-value for testing if the coin is fair

� p-value: α such that 0.5 is right at the edge of the confidence interval

� Data we observe is unlikely (less than p-value chance) to come from a fair coin
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