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Simulation (i.e., creating fake data)

Why do this? Why not just use real data?

e Because with real data, we don’t know what the right answer is

e So if we do some method, and it gives us an answer, how do we know if the

answer is right?
e Simulation lets us know the right answer

e And if the method works (at least in our fake scenario), we can apply it to some
real data



Goal: Uncovering the truth

When it comes down to it, what is the purpose of data analysis?

o When we work with data, we have this idea that there exists a true model

The true model is the way the world actually works!

But we don't know what that true model is



The purpose of data analysis

e So that's where the data comes in
e The true model generated the data (the 'data generating process' or DGP)

e By looking at the data we're trying to work backwards to figure out what is the
'data generating process’

e With simulation, we know what generated the data and what the true model is.
Thus we can check how close we get with our data analysis



e Let's generate 500 coin flips

e True model: generate heads with probability 1/2 and tails with probability 1/2

coins <- sample(c("Heads","Tails"),500,replace=T)



e Now let's take that data as given and analyze it in our standard way!
e The proportion of heads is ‘mean(coins=="Heads")' (~0.496)

e And we can look at the distribution, as we would:

mean (coins==’Heads’)
barplot (prop.table(table(coins)))

#THE GGPLOT2 WAY

#ggplot (as.data.frame(coins),aes(x=coins))+geom_bar ()
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So what's our conclusion?

We would “estimate” that the true model generates heads ~0.496 of the time

° % is correct, so pretty close! But not exact.

What if it always errs on the same side? Then it's not a good method at all!
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Simulation in a loop

e We can go a step further by doing this simulation over and over again in a loop!
e This will let us tell whether our method gets it right on average

e And, when it's wrong, how wrong it is!
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Simulation in a loop

#A blank vector to hold our results
propHeads <- c()
#Let’s run this simulation 2000 times
for (i in 1:2000) {
#Re-create data using the true model
coinsdraw <- sample(c("Heads","Tails"),500,replace=T)
#Re-perform our analysis
result <- mean(coinsdraw=="Heads")
#And store the result
propHeads [i] <- result
}
#Let’s see what we get on average
stargazer (as.data.frame (propHeads) ,type=’text’)
#And let’s look at the distribution of our findings
plot (density (propHeads) ,xlab=’Proportion Heads’,
main=’Mean of 501 Coin Flips over 2000 Samples’)
abline (v=mean (propHeads),col=’red’) 12
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Simulation in a loop

Now that’s pretty exact!

What are we learning here?

The method that we used (taking the proportion of heads) will, on average, give

us the right answer (1)

Good! We can apply this method to the the real world

Caveat: in any given sample that we actually observe, it might be a little off
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Real world

Imagine we didn’t know the answer was
2

We wan to know what proportion of the time will a coin land heads

Collect data on coin flips

Perform our analysis method - take proportion of heads, and get ~0.496

Conclude that the true model produces heads ~0.496 of the time

We wouldn't be dead on, but on average we'd be right!

Statistical inference is all about formalizing this process
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Warning... this is hard

e Randomness is all around us

e Qur brain is NOT hardwired to think about randomness
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Random variables

Probability /statistics allows us to analyze chance events in a logically way

The probability of an event is a number indicating how likely that event will occur

Probability is always between 0 (never happens) and 1 (always happens)

Random variable assigns numbers to different outcomes (each with a probability)

Coin toss. It's random. Each face has % probability

e By assigning 1 to tail and 0 to head we created a random variable
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Before we go any further, some clarifications

e Goal: Estimate unknown parameters

e To approximate parameters, we use an estimator, which is a function of the data
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Important notation

Based on this tweet: https://twitter.com/nickchk/status/1272993322395557888

e Greek letters (e.g., p) are the truth (i.e., parameters of the true DGP)

e Greek letters with hats (e.g., i) are estimates (i.e., what we think the truth is)

e Non-Greek letters (e.g., X) denote sample/data

o Non-Greek letters with lines on top (e.g., X) denote calculations from the data
(e, X = % > Xi)-

e We want to estimate the truth, with some calculation from the data (i = X)

e Data — Calculations — Estimate —— Truth
Hopefully
e Example: X — X — 1 —»
p AL
Hopefully
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https://twitter.com/nickchk/status/1272993322395557888

Notation example with a coin toss

e i denotes the true probability a coin lands head (% if the coin is fair)

e /i is our estimator of the probability a coin lands head

X is the data we gather from tossing a coin 500 times

X is the proportion of times the coin lands head

Data from coin tosses —> Calculate proportion of heads — Estimator for the
robability of heads —— True probabilit
P Yy s p Yy
Hopefully
o X — X —@u —
Ko M
Hopefully
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Discreet random variables

Takes only a discreet set of values

Probability distribution (P(X = x) = f(x)): probability event x happens

f(x) €10,1]

Cumulative probability distribution (P(X < x) = F(x): probability random
variable is less than or equal to x
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Continuous random variables

Takes a continuum of values

Probability density function (f(x)): not the probability x happens

e zero since there are infinity many possible values
e Pla<x<b)= fab f(x)dx

e f(x) helps us recover the probability that a random variable is in an interval

f(x) € [0,1]

Cumulative probability distribution (P(X < x) = F(x) = [*__ f(x)dx: probability
random variable is less than or equal to x
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Summarizing a distribution

e What are we actually doing when we do something like take a mean or a median?

e We're trying to say something about the distribution of that variable

e Distribution: how often values occur when you randomly sample over and over

Distribution of a coin toss: half the times you get “head” (other half get “tail")

Distribution of the minutes in the day: it's equally likely to be any minute

e Distribution of height looks like a bell-curve shape

Distribution of income/wealth: Most people near the bottom; very few at the top

e https://wid.world/simulator/

e https://mkorostoff.github.io/1-pixel-wealth/
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Summarizing a distribution: Expectations and variances

e Expectation attempts to capture the “mean” of the random variable

e Variance quantifies the spread of the random variable
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Summarizing a distribution: Expectations and variances

e Expectation attempts to capture the “mean” of the random variable

e Variance quantifies the spread of the random variable

e For a discreet random variable

o E[X] =", f(x)x
o V(X):=E[(X -E[X])?] = 3, f(x) (x - E[X])?
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Summarizing a distribution: Expectations and variances

Expectation attempts to capture the “mean” of the random variable

e Variance quantifies the spread of the random variable

For a discreet random variable

o E[X] =", f(x)x
o V(X):=E[(X -E[X])?] = 3, f(x) (x - E[X])?

e For a continuous random variable
o E[X]:= [T f(x)xdx
o V(X):=E[X-E[X])?]=[

o0
— 00

f(x) (x — E[X])? dx
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Expectations and variances

For any constants a and b and random variables X and Y:

e E[aX + b] = aE[X] + b

E[X + Y] = E[X] + E[Y]

V(aX + b) = a?V(X)

Cov(X, Y) = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y]

Cor(X, Y) := 5280 € [-1,1]

V(X +Y) = V(X)+ V(Y) +2Cov(X, Y)
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Independence

e X and Y are independent if P(X < x,Y <y)=P(X <x)P(Y <y)
e If X and Y are independent then:

o E(XY)=E(X)E(Y)

e Cov(X,Y) =0 (if Cov(X,Y) =0 this does not imply independence)

o V(X+Y)=V(X)+V(Y)
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No correlation does not mean no causality/dependence: Mathematical fact

Let X be a random variable such that P(X = x) = } if x € {—1,0,1}

o Let Y = X?
e X and Y are not independent (in fact Y is a function of X)
e EX=0
e EY =2
e EX3=0
Cov(X,Y) = E(X—EX))(Y —E(Y))
2

= E(X)(X* - 3)

_ 3_x2

= E(X*-X3)

= E(X%) - %IE(X)

= 0
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Normal distribution

Let X ~ N(u,0?)

e The probability density function (PDF) of X is given as:

(%) 1 _(x—gﬂ
— 20
A v 271'0'26

The cumulative distribution function (CDF) of X is given as:

X

P(X < x) = Fx(x) = / e (x)

— 00

E[X]=pn

V(X) = o2

A standard normal has mean zero (= 0) and variance one (0 = 1)
® (-): CDF of the standard normal
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Normal distribution

e For a,b € R and independent random variables X ~ N(ux,0%);Y ~ N(uy,o%)
e aX + b~ N(aux + b, a*c%)
o X+ Y~ N(ux +py,0% +0%)
e Therefore
X — px
ox

~ N(0,1)

e The cumulative distribution function (CDF) of X is given as:

X — _ _
P(X <x)=P DL o H K :<D<X “X>
ax ox

Standard normal
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Generating Normal data

e Good for many 'real-world’ variable: height, intellect, log income, education level

e Especially when those distributions tend to be tightly packed around the mean!

e Less good for variables with huge huge outliers, like stock market returns

e ‘rnorm(thismanyobs,mean,sd)’ will draw ‘thismanyobs' observations from a normal
distribution with mean ‘mean‘ and standard deviation ‘sd

e ‘rnorm(thismanyobs)‘ will assume ‘mean=0" and ‘sd=1"'

normaldata <— rnorm(5)
normaldata

normaldata <— rnorm(2000)
hist(normaldata,
xlab="Random Value" ,
main="Random Data from Normal Distribution”,
probability=TRUE)
33
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No correlation does not mean no causality/dependence: Mathematical fact Il

e Let X ~ N(0,1)

o Let Y = X?
e X and Y are not independent (in fact Y is a function of X)
e EX =0
e EY =02
e EX3=0
Cov(X,Y) = E(X —E(X))(Y —E(Y))
= E(X)(X*-07)
E(X® — Xo?)
= E(X?) - o°E(X)
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Uniform distribution

Let X ~ U(a, b)

e (%) ﬁ ifa<x<b
[ ] X X) =
0 otherwise

E[X] = *§2
o V(X)= (22

e cX ~ U(ca,cb)

X+d~U(@a+d b+d)
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Generating uniform data

Good for variables that should be bounded: e.g., “percent male” can only be 0-1

Gives even probability of getting each value

‘runif(thismanyobs,min,max)" will draw ‘thismanyobs' observations from the range

of ‘min‘ to ‘max’.

‘runif(thismanyobs)" will assume ‘min=0" and ‘max=1'

uniformdata <- runif (5)

uniformdata

uniformdata <- runif (2000)

hist (uniformdata,xlab="Random Value",
main="Random Data from Uniform Distribution",
probability=TRUE)
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Generating Other Kinds of Data

e ‘sample()’ picks randomly from categories (e.g., Heads/Tails) or integers (e.g.,
‘1:10%)

R can generate random data from other distributions. See ‘help(Distributions)’

We have looked quickly at two:

e The uniform distribution

e The normal distribution

But don't forget there are more

When generating “random” data: set a seed so you can reproduce the results
(‘set.seed(XXX)")
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Law of large numbers

e Let Xi,..., Xy be independent and identically distributed (iid) with mean x and
variance o2

o E S, X| = Ny
o V(2L X) = No?
( Z, 1 X) = %
- [% ZIN=1 Xi} = B
e As n grows, the variance goes to zero, but the mean is always u

e That is, the mean of the random variables (X) converges (in probability) to x
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Example: Coin flips

e Throw a coin 1,000 times

, _ 1 if coin = Heads
e let's create a random variable X =

0 if coin = tails

o V(X)=(1-05);+(0-050; =3

e X proportion of times coin lands on heads

OVY:ﬁ
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Example: Coin flips

A little simulation:

## Generate data with 1000 coin flips

## Pprob of head and tail is the same

data <- sample(c("Heads","Tails"),1000,replace=TRUE)

## Create random variable (one if heads, zero if tails)
X<-as.numeric (data=="Heads")

# Calculate the proportion of heads of the first n observations
X_n<-cumsum(X)/(1:1000)

#Plot the results

plot(1:1000,X_n,bty="L",ylim=c(0,1),
ylab="Average",xlab="Tosses",type="1",1lwd=2,
cex.lab=1.5,cex.axis=1.5,cex.main=1.5)

abline (h=0.5,1ty=2,co0l=2,1wd=2)

42



Law of large numbers in action
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Central limit theorem

Let Xi, ..., Xy be iid with mean z and variance o?

% ZINZI Xf—“ — Yn*

L is distributed approximately (converges in law) ~ N(0, 1)

The larger N is, the closer the distribution of X% is to N(0,1)

n
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Example: Coin flips CLT

# We will do this process 10,000 times!
Repetitions=10000
# Each time, we will throw the coin 1,000 times
CoinFlips=1000
# This is a vector we will save the proportion of heads in each repetition
Vector_Means=rep (NA,Repetitions)
# Loop over the repetitions
for(rep in 1:Repetitions){
#Create the coinflip data
data <- sample(c("Heads","Tails"),CoinFlips,replace=TRUE)
#generate random variable
X=as.numeric (data=="Heads")
#save the proportion of times it lands head
Vector_Means [rep]l=mean (X)
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Example: Coin flips CLT

#Should converge to a N(0.5,0.25/CoinFlips) by CLT

pdf ("CLT.pdf")

#Plot the distribution of the means

hist(Vector_Means, col="red", xlab="Proportion of heads",breaks=50,
main="CLT",probability =T,
cex.lab=1.5,cex.axis=1.5,cex.main=1.5)

#Plot N(0.5,0.25/CoinFlips)

xfit<-seq(min(Vector_Means) ,max(Vector_Means),length=40)

yfit<-dnorm(xfit ,mean=0.5,sd=sqrt(0.25/CoinFlips))

lines(xfit, yfit, col="blue", lwd=2)

dev.off ()
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Inference

Goal: Estimate unknown parameters

e To approximate parameters, we use an estimator, which is a function of the data

Thus, estimator is a random variable (it is a function of a random variable)

Use relationship between estimator (its distribution usually) and parameters to
infer something about the parameters
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Important notation

Based on this tweet: https://twitter.com/nickchk/status/1272993322395557888

e Greek letters (e.g., p) are the truth (i.e., parameters of the true DGP)

e Greek letters with hats (e.g., i) are estimates (i.e., what we think the truth is)

e Non-Greek letters (e.g., X) denote sample/data

o Non-Greek letters with lines on top (e.g., X) denote calculations from the data
(e, X = % > Xi)-

e We want to estimate the truth, with some calculation from the data (i = X)

e Data — Calculations — Estimate —— Truth
Hopefully
e Example: X — X — 1 —»
p AL
Hopefully
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Properties of a good estimator

e Unbiased: E(i) = i
e Consistent: 1 —p 1

e Think of this as: unbiased + variance goes to zero when N grows
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Example: is a coin is fair?

e Toss a coin

Assign head=1, tail=0

11 is the probability it lands heads (if coin is fair 4 = 3)

What is a good estimator of u?
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Example: is a coin is fair?

e Toss a coin

Assign head=1, tail=0

11 is the probability it lands heads (if coin is fair 4 = 3)

What is a good estimator of u?

Let's try: average of the observations: 1 = X
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Example: is a coin is fair?

e Is it unbiased? Yes: EX = £ S EX =1 Y. n=p

e Is it Consistent? Yes by the law of large numbers
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Example: is a coin is fair?

Is it unbiased? Yes: EX = £ Y. EX = 4> u=p

Is it Consistent? Yes by the law of large numbers

e Assume in the actual data we observe X = 0.6

Is the coin fair?
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Example: is a coin is fair?

Our certainty is going to depend on how many times we tossed the coin

By the CLT YN (X — 1) ~ N(0,1)

2= p(l—p)

® 0

Then X ~ N (u,u(l — ,u)%)
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If = 0.5 the CLT says the distribution is the following

10 tosses 100 tosses 1000 tosses
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To assess fairness we need to know where 1 lies (Confidence interval)

e We are going to play around to see if we can find an “interval” for p
We want to find some values a and b such that P(a< u < b) =1—«
P(—a>—p>-b)=1-«

e PX—a>X—pu>X-b)=1-a

X—p

o P X_al> >X_b1 =1-o
y/U2N 0_2% 0-2N
——

standard normal
e Assuming we want symmetry (so 5 on each side), then:

od)(xgzbl)_‘;
.¢(ﬁ;)—1—g
N

3
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Confidence interval
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To assess fairness we need to know where ( lies

e Say a =5%, then &1 (%) =—1.96 and =1 (1 — %) =1.96

o
2
e X = 0.6, then 02 = (0.6)0.4

e Then we know u is between:

e 0.6—1.9640.24

o 0.6+ 1.9640.24
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To assess fairness we need to know where ( lies

o We know i is between:
e 0.6 —1.96%0.24
e 0.6+1.96510.24
o If N =10 then
e ~ 0.903
e ~ 0.2906
e Coin could be fair
e If N =100 then
e =~ 0.50398
e ~ (0.69602
e ‘Data we observe is unlikely (less than 5% chance) to come from a fair coin
e If N =1,000 then
e ~ 0.5696358
e ~ 0.6303642

e Data we observe is unlikely (less than 5% chance) to come from a fair coin 6



p-value for testing if the coin is fair

e p-value: « such that 0.5 is right at the edge of the confidence interval

e Data we observe is unlikely (less than p-value chance) to come from a fair coin
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